
COMPSCI 677 Distributed and Operating Systems Spring 2023

Lecture 9: March 06
Lecturer: Prashant Shenoy Scribe: Shruti Parvekar (2023), Basundhara Chakrabarty

9.1 Virtualization

Virtualization is the process of providing an interface to mimic the behavior of another system or component.
Typically, virtualization mimics one of the following:

• Assembly instructions

• System calls

• APIs

Depending on what is replaced or mimicked, we obtain different forms of virtualization.

9.1.1 Types of Virtualization

9.1.1.1 Emulation

In emulation, a software simulation of a particular type of hardware or architecture is done using another.
Once you’ve the emulated hardware, you can run an OS on it. An example would be to emulate an Intel
process on ARM hardware, and thereafter any OS that was compiled for ARM will run unmodified on the
emulated Intel processor. The OS will execute machine instructions on the emulated hardware, which won’t
run as-is on the native hardware, and therefore binary translation will need to be performed to convert them
to native instructions. This caused significant overhead/slowdown, which causes a performance penalty.

Examples: Box, QEMU (Used by much Linux software), VirtualPC for MAC (Before, MAC computers
were PowerPC based, and VirtualPC emulated a x86 software layer on PowerPC machine, allowing one to
run Windows)

9.1.1.2 Full/Native Virtualization

In native virtualization, one or more unmodified OSs and the applications they contain are run on top of
virtual hardware, given that the underlying native hardware and virtual hardware are of the same type.
Here the VM simulates “enough” hardware to allow the OSs to be run in isolation. One limitation is that
one can run OSs designed for the same hardware only. One use case is that the virtual OS can be used as a
sandbox for testing components in different environments.

Examples: IBM VM family, VMWare Workstation, Parallels, VirtualBox.

9-1



9-2 Lecture 9: March 06

9.1.1.3 Para-virtualization

Similar to full/native virtualization except that the kernel of the guest OS is modified so that it uses special
APIs to call the hypervisor instead of directly accessing the hardware. The applications run are unmodified.
Examples: Xen, VMWare ESX Server.

9.1.1.4 OS-level Virtualization

Here the OS allows multiple secure VMs to be run on top of a native OS kernel. Each application run on a
VM instances sees an isolated OS. This is lightweight as different OSs are not run.

Examples: Solaris Containers, BSD Jails, Linux Vserver, Linux containers, Docker.

Question: What is the difference between OS and Hardware level virtualization.
Answer: We have some interface A used to mimic interface B. Hardware is emulating the actual chip.

9.1.1.5 Application level virtualization

This type of virtualization uses an application interface to emulate another application. Here, the application
is given its own copy of components that are not shared like global objects, registry files etc.

Examples: JVM written using C libraries exports the JAVA interface. Rosetta on Mac (also emulation)
allows us to run binaries compiled on one architecture on another architecture WINE.

9.2 Hypervisors

The hardware virtualization layer is called a hypervisor or a virtual machine monitor (VMM). A hypervisor
is the virtualization layer, which takes care of resource management, isolation and scheduling. There are 2
types of hypervisors that act like real hardware and implement full/native virtualization.

9.2.1 Type 1 Hypervisor

Type 1 hypervisor runs on ”bare metal”. It can be thought of as a special OS that can run only VMs as
applications. On boot, it’s the hypervisor that boots.

Question: Do the multiple OSs running expect the same hardware?
Answer: Yes, because the hypervisor gives the illusion that the OS-s is running on the underlying native



Lecture 9: March 06 9-3

hardware. The hypervisor allocates resources between VMs, schedules VMs, etc., the hypervisor behaves
like a pseudo-OS for the VMs.

A Type 2 hypervisor runs on a host OS and the guest OS runs inside the hypervisor.

Question: Does type 1 belong to native or paravirtualization?
Answer: Both.

9.2.2 Type 2 Hypervisor

The boot process boots the native OS, the hypervisor runs as a application on the native OS. The native
OS is called host OS and the OSs that run on the hypervisor are called guest OSs.

Question: Can you do further virtualization?
Answer: Yes, but it is complicated. It is called nested virtualization

Question: Can multiple guest OSs be run?
Answer: Yes, multiple VMs can be run, each with its own guest OS

Question: Is the bootloader GRUB a hypervisor?
Answer: No, GRUB used in dual boot machines decides which one OS it has to boot, whereas hypervisors
can run multiple guest VMs.

Question: Can a single hypervisor simulate multiple hardwares?
Answer: No, for that emulation needs to be used.

Question: In an emulator, if a VM has the same processor as host machine, will it be faster?
Answer: Yes, because the emulator will not need to emulate another processor and will default to full
virtualization instead. Thus reducing the overhead and making it faster.

Question: Why would we want to start a VM with the same OS as the underlying host OS?
Answer: The VM can be used as a second machine for multiple reasons. For eg.: for testing purposes.
However, the guest OS need not necessarily be the same.

Question: If the guest OS gets affected by malware, will it also affect host OS?
Answer: The host and guest OSs are separate OS environments on their own. Thus, if guest OS is bridged,
it will not have an impact on the host OS.

Question: Why would we want to use Type 1 hypervisor and not install an OS?
Answer: If the requirement is to run multiple VMs on a single machine, a hypervisor should be installed.
It will allow a large server to run multiple smaller servers each capable of running different applications. If
a single OS is to be used on the machine, then virtualization is not needed and hypervisor should not be
installed.

Question: Do Data centers use Type 1 hypervisors?
Answer: Yes, Type 1 hypervisors are very commonly used in data centers and cloud platforms.

Question: Can one VM span multiple physical machines?
Answer: No, because an OS cannot run on different machines. However, multiple VMs running on different
servers can communicate with each other to act like a distributed system.

Question: Do guest OSs communicate with each other via hypervisor?
Answer: Guest OSs have their own network cards with individual IP addresses and can thus directly
communicate with each other over network. Since each VM is a software emulated version of a full PC,
mechanisms such as shared memory cannot be used for communication between them.



9-4 Lecture 9: March 06

9.3 How Virtualization Works?

For architectures like Intel, different rings signify different levels of privilege. The CPU can run in either user
mode (ring 3) or kernel mode (ring 0). In kernel mode, any instructions can be run. But in user mode, only
a subset of instructions is allowed to run. The OS kernel is trusted more than user applications, so the OS
kernel is run in kernel mode and user applications are run in user mode to limit instruction sets. A simple
example is the halt instruction which user applications are not allowed to run. Also, memory management
instructions are only allowed to run in kernel mode. Intel CPUs have intermediate rings (ring 1, ring 2) in
which guest OSes can be run. Sensitive instructions (I/O, MMU, halt, etc.) are only allowed to run in kernel
mode. Privileged instructions cause a trap or interrupt. I/O is one example. These are not related to user
mode or kernel mode.

9.3.1 Type 1 Hypervisor

Theory: Type 1 virtualization is feasible if sensitive instruction is subset of privileged instructions or all
sensitive instructions always cause a trap.
Reasoning: On booting a Type 1 hypervisor, it runs in kernel mode. A Windows VM run on the hypervisor
should not be trusted as much as the hypervisor and is therefore run in user Mode. Windows assumes it
is the kernel and can run sensitive instructions, but these sensitive instructions won’t run because it will
be running in user mode. The solution is that the hypervisor intervenes and runs each sensitive instruction
attempted by the Windows VM. How will the hypervisor be alerted when Windows attempts so? If the
sensitive instruction causes a trap, the hypervisor intervenes and executes it for the VM.

Early Intel processors did not have Type 1 support as they simply ignored any sensitive instructions executed
in user mode. Recent Intel/AMD CPUs have hardware support, named Intel VT and AMD SVM. The idea
is to create containers where a VM and guest can run and that hypervisor uses hardware bitmap to specify
which instruction should trap, so that sensitive instruction in guest traps to hypervisor. This bitmap property
can also be turned off.

Question: Are there instructions that are privileged but not sensitive?
Answer: Yes. Eg: Divide by zero or an illegal pointer access. All these will generate an exception.

Examples:



Lecture 9: March 06 9-5

a) VMWare ESXI running, a specialized OS kernel that can run any arbritary VMs on it

b) Windows Hyper-V creates partitions, runs Windows in the parent partition (one copy of windows is
mandatory), and the child partitions can run Linux or any other OS. Less flexible than ESXI.

c) Linux KVM or kernel virtual machine: Implemented as a device driver that gives barebone support for
Type 1. Along with some other components (like QEMU) gives the functionality for Type 1 hypervisor.
Linux OS has KVM loaded as a module. Thus, Linux OS is a hybrid OS which can be booted normally on
a machine and can serve as a standard OS and also as a hypervisor simultaneously when KVM is enabled.

Question: In the above Hyper-V diagram, does the ”Ring -1” indicate that the hypervisor runs with
negative privileges?
Answer: No, there is no concept of negative privileges. It just indicates relative privileges.

Question: Can a physical machine run more than one ESXi hosts?
Answer: No, a physical machine can boot only one OS at a time, either a standard OS or the hypervisor
unless there is hardware partitioning configured. But normal machines don’t have that and can only run a
single OS.

Question: Can Linux KVM be classified as Type 2 Hypervisor?
Answer: Since the KVM hypervisor is a part of the OS and not run as a separate application on top of the
OS, it is classified as Type 1.

Question: How is a VM started in KVM? Do we boot host OS first or the VM can be started directly?
Answer: To start a VM, we always boot the hypervisor first. In Linux KVM, since the hypervisor is a part
of the OS, we boot Linux OS first and enable KVM. VMs can be started on it now.



9-6 Lecture 9: March 06

9.3.2 Type 2 Hypervisor

A Type 2 hypervisor runs as an application on the host OS and therefore does not have kernel level privileges.
Again, only the host OS can run in kernel mode. The Guest OS can also run only user mode instructions.

Therefore, the Type 2 hypervisor performs dynamic code translation. It scans instructions executed by the
guest OS, replacing the sensitive instructions with function calls. These function calls invoke the Type 2
hypervisor which in turn makes system calls to the OS, thereby involving the host OS. This process is called
binary translation. This leads to slowdown as every piece of sensitive code has to be translated. Therefore,
VT support is not needed, no support is needed from the hardware to ensure that all sensitive instructions
are privileged.

For example, VMWare Fusion, upon loading program, scans code for basic blocks and replaces sensitive
instructions by VMWare procedure using binary translation. Only the guess OS’s instructions need to be
scanned, not the applications.

Question: How do applications that do not support VMs identify that they are running on a VM?
Answer: A VM simply looks like any other physical machine to an application. Thus, there is no technical
reason as to why an application cannot run on a VM. However, some applications are not licensed to run
inside VMs. Eg: MacOS. Applications can parse some markers to identify parameters such as drivers used
by Type 2 hypervisors, but this is not a robust way.

Question: What happens if guest OS has hardware requirements that the physical machine does not satisfy?
Answer: This impact will be similar to when such a situation occurs in a non-virtualized environment. Eg:
An OS might not boot if it has less resources.

9.3.3 Para-virtualization

Instead of dynamically translating the sensitive instructions, leading to overhead, we can categorically change
the kernel instructions to replace the sensitive instructions with hypercalls (call to the hypervisor) to get a
modified OS with no sensitive instructions. Every time a sensitive function needs to be executed, a hypercall
is made instead.

Both Type 1 and 2 hypervisors work on unmodified OS. In contrast, para-virtualization modifies OS ker-
nel to replace all sensitive instructions with hypercalls. Thus, the OS behaves like a user program making
system calls and the hypervisor executes the privileged operation invoked by hypercall. Since the modified
OS eliminates all sensitive instructions with hypercalls, it can be run on any processor as hypervisor will
handle invoking system calls. Paravirtualization is the only way to support Type 1 virtualization on older
processors(which do not generate traps for sensitive instructions).
Note that such a modified OS will always need hypervisors and will no longer support standard non-
virtualized environments.

Question: In a Type 2 hypervisor, after replacing sensitive instruction with a procedure, will it make a
trap to the host OS?
Answer: It will not generate a trap, because the hypervisor will invoke a system call to directly ask the
host OS to execute an instruction.

Question: What is the difference between a system call and a kernel trap?
Answer: A system call is essentially a function call to the OS through which which you can ask the processor
to perform an operation whereas a trap is like an interrupt to the processor which the processor will have
to serve by identifying what caused it.



Lecture 9: March 06 9-7

Example: Xen ran as a para-virtualized version of Linux when the hardware did not support Type 1
hypervisors. Xen needed Linux to run in domain 0 (master partition or controller VM) just like HyperV.
All OS drivers are placed in this VM(also called driver domain). So any other VM wanting to make a driver
call will direct it to the driver domain via the hypervisor.

Question: Does this need communication between VMs?
Answer: Yes, but this communication is not network-based and can happen via hypervisor through
IPC(Inter-Process Communication).

Question: Will para-virtualization have faster execution at the cost of having a modified OS?
Answer: It will definitely be faster than Type 2 virtualization.

9.3.4 Memory Virtualization

The hypervisor has control over RAM and allocates memory to the guest OS, and the guest OS allocates
memory to its processes. If the guest OS tries to change the memory allocation of a process, that is a
sensitive instruction because only the host OS is allowed to change page tables. Processes are not allowed
to this. But a guest OS in Type 1 does not have those privileges. It still maintains page tables, and it still
thinks it owns the machine that it can do whatever it wants, but it is not allowed to do so.

So what we do here is that we change those page tables in guest OSes to be read-only. When OS tries to
write to that page table, a trap is created because that is a write instruction to read-only memory page.
The hypervisor maintains a second page table which is called a shadow page table. That is a mirror of the
original page table. It makes those changes in its actual page table. It utilizes the existing hardware feature
that causes a trap when a write instruction happens on read-only region.

9.3.5 I/O Virtualization

Typically, the OS manages the physical disk, the guest OS should not be able to make changes to it. The
hypervisor creates a large file on the guest’s file system that emulates a disk called virtual disk (eg., vmdk
for VMWare) When the guest OS writes to the disk, it effectively writes to this virtual disk. Multiple virtual
disk maps to the real disk.

Question: Does a virtual disk have 1:1 mapping or 1:N mapping to VMs?
Answer: Each VM will have its own virtual disk. Multiple VMs cannot be sharing the same virtual disk
as theu might overwrite contents causing discrepancies.

Question: In a shadow page table, do we map guest physical address to host physical address?
Answer: Each VM has its own address space. Page tables inside the guest OS will keep mappings of this



9-8 Lecture 9: March 06

address space. However, this address space will translate to some memory addresses in the host space as
well. The shadow page table holds these mappings.

Question: Does each VM have one shadow table?
Answer: Page tables are per-process. So each VM will have multiple shadow tables based on the processes
running in them.

Question: Can Type 2 hypervisors leverage VT technology?
Answer: There can be a hybrid implementation of Type 2 hypervisor to leverage VT technology if the
underlying processor supports it. This reduces the translation overhead for sensitive instructions and thus
make it faster.

9.3.6 Network virtualization

Similar to I/O virtualization, a network card is also virtualized. Here, VMs get a software emulation of the
physical ethernet card. Whenever a read/write happens on this card, it creates a trap and the operation is
redirected to the physcial ethernet card instead. The logical(emulated) network card cannot communicate
on its own. It can only receive requests and route them to the physical card to process them.

9.3.7 Benefits of Virtualization

One major benefit is that virtualization makes it easier to distribute pre-built applications and software.
One can design virtual appliances (pre-built VM with pre-installed OS and pre-configured applications) that
are plug-and-play.

For multi-core CPUs, careful allocation of CPU resources per VM can be made.

9.3.8 Use of Virtualization

a) Cloud Computing b) Data Centres c) Software Testing and Development

9.3.9 Brief: OS Virtualization

OS virtualization uses the native OS interface to emulate another OS interface. A use case can be emulating
an older version of OS. A popular use case is to allow backward compatibility, allow an older version of an
application to be run, or sandboxing.



Lecture 9: March 06 9-9

Questions: Is Windows Compatibility mode also an example of OS virtualization?
Answer: No, it does not use virtualization. It involves more of driver versions handling to pretend like an
older version.

In OS virtualization, we create ’light-weight’ virtual machines called containers. These containers are light-
weight because they are built on top of the same underlying host OS. We cannot run an additional separate
OS inside a container. Applications run directly inside containers and it uses the underlying host OS.

Question: Do we need to modify the host OS for OS virtualization?
Answer: The host OS needs to have support for OS virtualization, but it does not need any modification
apart from that.

Question: What usecases does this have?
Answer: A base usecase for containerization is to islaote applications from one another. Docker is completely
based on containerization.

9.3.10 OS mechanisms for Linux Container

9.3.10.1 Namespaces

Namespaces can allow control over what resources are visible to a process. Resources such as processes,
mount points, network interfaces, users etc. Eg: If you restrict the processes that a container can see, if a
user runs ps or top command on the container, it will only return a subset of the processes that are actually
running on the physical machine.

9.3.10.2 Cgroups

Cgroups or ’Container Groups’ can allow control over how much resources a container can consume. Eg:
A container be allocated 1 GB og memory. Thus, all processes running on the container can collectively
consume only 1GB of memory and anything above that will start failing. Resources such as memory, CPU
cores, I/O cycles, network bandwidth etc.



9-10 Lecture 9: March 06

Question: Can resources allocated to a container be changed on the fly?
Answer: Yes, utilities available for that

9.3.11 Proportiaonal Share scheduling

This is a policy used to allocate resources across processes where-in each process is assigned a weight and it
is allocated resources accordingly.


